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Why digital s;crategies fail

By Jacques Bughin, Tanguy Catlin, Martin Hirt, and Paul Willmott
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Most digital strategies don’t reflect how digital is changing economic
fundamentals, industry dynamics, or what it means to compete.
Companies should watch out for five pitfalls.

he processing power of today’s smartphones are several thousand times

greater than that of the computers that landed a man on the moon in 1969.
These devices connect the majority of the human population, and theyre only ten
years old.'

MOST POPULAR

1. An executive’s guide to
Al

Interactive

2. Why digital strategies fail
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How can this be, at a moment when virtually every company in the world is worried

about its digital future? In other words, why are so many digital strategies failing?
The answer has to do with the magnitude of the disruptive economic force digital I
has become and its incompatibility with traditional economic, strategic, and

operating models. This article unpacks five issues that, in our experience, are

particularly problematic. We hope they will awaken a sense of urgency and point

toward how to do better. (For more on how companies are redefining their digital

strategies, see “Responding to digital threats.”)

Pitfall 1: Fuzzy definitions

When we talk with leaders about what they mean by digital, some view it as the
upgraded term for what their IT function does. Others focus on digital marketing or
sales. But very few have a broad, holistic view of what digital really means. We view
digital as the nearly instant, free, and flawless ability to connect people, devices, and
physical objects anywhere. By 2025, some 20 billion devices will be connected,
nearly three times the world population. Over the past two years, such devices have
churned out 90 percent of the data ever produced. Mining this data greatly enhances
the power of analytics, which leads directly to dramatically higher levels of
automation—both of processes and, ultimately, of decisions. All this gives birth to
brand-new business models.” Think about the opportunities that telematics have
created for the insurance industry. Connected cars collect real-time information
about a customer’s driving behavior. The data allow insurers to price the risk
associated with a driver automatically and more accurately, creating an opportunity
to offer direct, pay-as-you-go coverage and bypassing today’s agents.

Lacking a clear definition of digital, companies struggle to connect digital strategy to
their business, leaving them adrift in the fast-churning waters of digital adoption
and change. What'’s happened with the smartphone over the past ten years should
haunt you—and no industry will be immune.
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Why digital strategies fail

Pitfall 2: Misunderstanding the economics of digital

Many of us learned a set of core economic principles years ago and saw the power of
their application early and often in our careers. (For more on the changing
economics of digital competition, see the infographic below.) This built intuition—
which often clashes with the new economic realities of digital competition. Consider
these three:

Infographic

Don’t underestimate how digital disrupts the nature of competition.
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Disruption is always dangerous,
but digital disruptions are happening faster than ever.
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Majority of incumbents do not
respond and ultimately fail

Source: McKinsey Digital Global Survey, 2016 and 2017; McKinsey analysis

McKinsey&Company

of companies believe their
business model will remain

economically viable through
digitization
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= \What Al can and can’t do
(yet) for your business

By Michael Chui, James Manyika, and Mehdi Miremadi

By B X = U

Artificial intelligence is a moving target. Here’s how to take better MOST POPULAR

aim.

1. Leading with inner
agility

rtificial intelligence (AI) seems to be everywhere. We experience it at
Article - McKinsey Quarterly

home and on our phones. Before we know it—if entrepreneurs and
business innovators are to be believed—AI will be in just about every product . .
and service we buy and use. In addition, its application to business problem 2. An executive’s guide to
solving is growing in leaps and bounds. And at the same time, concerns about Al
AT’s implications are rising: we worry about the impact of Al-enabled e

automation on the workplace, employment, and society.
3. Microsoft’s next act

Podcast - McKinsey Quarterly

A reality sometimes lost amid both the fears and the headline triumphs, such as
Alexa, Siri, and AlphaGo, is that the AI technologies themselves—namely,
machine learning and its subset, deep learning—have plenty of limitations that
will still require considerable effort to overcome. This is an article about those
limitations, aimed at helping executives better understand what may be

4. The fairness factor in
performance
management
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What Al can and can’t do (yet) for your business

Future Al demand trajectory, % change in Al spending over next 3 years!

13 Leading sectors
12 Financial
1 services @ [
High tech and
10 communications
Transpertation

9 and logistics

8 Travel and o

; tourism Healthcare

o] o] Energy and
6 o Media and resources
5 Professional Retail @ entertainment [ ] °
services
4 ® ® Automotive
Education- @ Consumer and assembly
3 and packaged
2 goods
Building materials PY
1 Falling behind and construction
| 1 1 | | 1 1 | | 1 | ! ! J
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Current Al adoption, % of companies?
'Estimated average, weighted by company size; demand trajectory based on midpoint of range selected by
survey respondent.

2Adopting 1 or more Al technologies at scale or in business core; weighted by company size.
Source: McKinsey Global Institute Al adoption and use survey; McKinsey Global Institute analysis

McKinsey&Company

Executives hoping to narrow the gap must be able to address Al in an informed way.
In other words, they need to understand not just where AI can boost innovation,
insight, and decision making; lead to revenue growth; and capture of efficiencies—
but also where Al can’t yet provide value. What’s more, they must appreciate the
relationship and distinctions between technical constraints and organizational
ones, such as cultural barriers; a dearth of personnel capable of building business-
ready, Al-powered applications; and the “last mile” challenge of embedding Al in
products and processes. If you want to become a leader who understands some of
the critical technical challenges slowing AI's advance and is prepared to exploit
promising developments that could overcome those limitations and potentially
bend the trajectory of Al—read on.
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What Al can and can’t do (yet) for your business

Limitation 1: Data labeling

Most current Al models are trained through “supervised learning.” This means that
humans must label and categorize the underlying data, which can be a sizable and
error-prone chore. For example, companies developing self-driving-car
technologies are hiring hundreds of people to manually annotate hours of video
feeds from prototype vehicles to help train these systems. At the same time,
promising new techniques are emerging, such as in-stream supervision
(demonstrated by Eric Horvitz and his colleagues at Microsoft Research), in which
data can be labeled in the course of natural usage.” Unsupervised or semisupervised
approaches reduce the need for large, labeled data sets. Two promising techniques
are reinforcement learning and generative adversarial networks.

Reinforcement learning. This unsupervised technique allows algorithms to learn
tasks simply by trial and error. The methodology hearkens to a “carrot and stick”
approach: for every attempt an algorithm makes at performing a task, it receives a
“reward” (such as a higher score) if the behavior is successful or a “punishment” if it
isn’t. With repetition, performance improves, in many cases surpassing human

capabilities—so long as the learning environment is representative of the real world.

Reinforcement learning has famously been used in training computers to play
games—most recently, in conjunction with deep-learning techniques. In May 2017,
for example, it helped the Al system AlphaGo to defeat world champion Ke Jie in the
game of Go. In another example, Microsoft has fielded decision services that draw
on reinforcement learning and adapt to user preferences. The potential application
of reinforcement learning cuts across many business arenas. Possibilities include an
Al-driven trading portfolio that acquires or loses points for gains or losses in value,
respectively; a product-recommendation engine that receives points for every
recommendation-driven sale; and truck-routing software that receives a reward for
on-time deliveries or reducing fuel consumption.

Reinforcement learning can also help Al transcend the natural and social

limitations of human labeling by developing previously unimagined solutions and
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THE LEAN SERIES

Ash Maurya

RUNNING

LEAN

lterate from Plan A to a Plan That Works

O'REILLY" Eric Ries, Series Editor

PROBLEM SOLUTION UNIQUE VALUE UNFAIR ADVANTAGE
PROPOSITION

OMER SEGMENTS

KEY METRICS | CHANNELS

COST STRUCTURE REVENUE STREAMS

Your “business model” is the product

Lean Canvas is adapted from The Business Model Canvas (http://www.businessmodelgeneration.com)
and is licensed under the Creative Commons Attribution-Share Alike 3.0 Un-ported License.
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User Story
Mapping

DISCOVER THE WHOLE STORY,
BUILD THE RIGHT PRODUCT

Jeff Patton
with Peter Economy

Forewords by Martin Fowler,

Alan Cooper, and Marty Cagan

learned then if his big guess was right. You'll need to trust me on this,
but it wouldn't have been—because it rarely is.

Not like this....

@ O &
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This is a simple visualization made by my friend Henrik Kniberg,. It
beautifully illustrates a broken release strategy where at every release
I get something I can't use, until the last release when I get something
I can.

Henrik suggests this alternative strategy:

Like this!

e e ©

- = G B G
| 2 3 4 5

If I plan my releases this way, in each release I deliver something people
can actually use. Now, in this silly transportation example, if my goal
is to travel a long distance and carry some stuff with me, and you gave
me a skateboard, I might feel a bit frustrated. I'd let you know how
difficult it wastotravel long distances with that thing—although it was
fun to goof around with it in the driveway. If your goal was to leave
me delighted, you might feel bad about that. But your real goal was to
learn, which you did. So that’s good. You learned I wanted to travel
farther, and if you picked up on it, you also learned I valued having
fun.

In HenriK’s progression, things start picking up at around the bicycle
release because I can actually use it as adequate transportation. And,
at about motorcycle level, I can really see this working for me—and
I'm having fun too. That could be minimum and viable for me. If I

Howto Dot theWrongWay | 45
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Applications and value of
deep learning

By Michael Chui, James Manyika, Mehdi Miremadi, Nicolaus Henke, Rita Chung, Pieter Nel, and Sankalp Malhotra

i Discussion Paper (PDF-446KE)

Dy X @

An analysis of more than 400 use cases across 19 industries and nine
business functions highlights the broad use and significant economic

potential of advanced AI techniques.

rtificial intelligence (AI) stands out as a transformational technology of
A our digital age—and its practical application throughout the economy is
growing apace. For this briefing, Notes from the AI frontier: Insights from
hundreds of use cases (PDF-446KB), we mapped both traditional analytics and
newer “deep learning” techniques and the problems they can solve to more
than 400 specific use cases in companies and organizations. Drawing on
McKinsey Global Institute research and the applied experience with AI of
McKinsey Analytics, we assess both the practical applications and the
economic potential of advanced AI techniques across industries and business
functions. Our findings highlight the substantial potential of applying deep
learning techniques to use cases across the economy, but we also see some
continuing limitations and obstacles—along with future opportunities as the
technologies continue their advance. Ultimately, the value of AT is notto be
found in the models themselves, but in companies’ abilities to harness them.
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Notes from the Al frontier: Applications and value of deep learning B v 0 = G5

Sizing the potential value of Al

We estimate that the AI techniques we cite in this briefing together have the
potential to create between $3.5 trillion and $5.8 trillion in value annually
across nine business functions in 19 industries. This constitutes about 40
percent of the overall $9.5 trillion to $15.4 trillion annual impact that could
potentially be enabled by all analytical techniques (Exhibit 4).

Exhibit 4

Artificial intelligence (Al) has the potential to create value across sectors.

700
@ Retail
600
500
Healthcare systems @ Transport and logistics
Al impact, 400 and services Travel @
$ billion @@ Consumer packaged goods

Public and social sectors @ @ Automative and assembly

300 Advanced electronics/

semiconductors ® Banking
@ Insurance @ Basic materials
@ High tech
20 Media and )
entertainment @ Oil and gas
Telecommunications @ ‘ ® Chemicals
riculture
100 4 Ag
Pharmaceuticals
and medical @ Aerospace and defense
products
0
20 30 40 50 60

Share of Al impact in total impact derived from analytics, %

McKinsey&Company | Source: McKinsey Global Institute analysis
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5000 samples per category
10M to outperform humans “
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Consumer industries such as retail and high tech will tend to see more potential
from marketing and sales AT applications because frequent and digital
interactions between business and customers generate larger data sets for Al
techniques to tap into. E-commerce platforms, in particular, stand to benefit.
This is because of the ease with which these platforms collect customer
information such as click data or time spent on a web page and can then
customize promotions, prices, and products for each customer dynamically and
inreal time.

Exhibit 5

Artificial intelligence’s impact is likely to be most substantial in marketing
and sales as well as supply-chain management and manufacturing,
based on our use cases.

Value unlocked, $ trillion

By advanced analytics

Marketing and sales Supply-chain management and manufacturing

Risk Service Product Strategy and Finance HR Other operations
operations  development corporate and IT
finance

Note: Figures may not sum to 100%, because of rounding.
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instead of writing lines of
code defining behaviors

behaviors by recognizing
patterns in data
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evidence; = Z W, jx; + b;

Y1 Wii Wia Wis| |21 b1

Y2 | = softmax W2’1 W272 Wz,g | Lo | + b2
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y = softmax(evidence)

softmax(z) = normalize(exp(z))
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TensorFlow ™ Current (1.1

# tensorflow.org ] th [m)

Install r1.1 Develop r1.1 APIr1.1 Deploy r1.1 Extend r1.1 GITHUB

GET STARTED PROGRAMMER'S GUIDE TUTORIALS PERFORMANCE

We know that every image in MNIST is of a handwritten digit between zero and nine. So there are only ten possible things Contents
LT that a given image can be. We want to be able to look at an image and give the probabilities for it being each digit. For About this tutorial
R LT A example, our model might look at a picture of a nine and be 80% sure it's a nine, but give a 5% chance to it being an eight The MNIST Data

MNIST For ML Beginners
Deep MNIST for Experts

(because of the top loop) and a bit of probability to all the others because it isn't 100% sure.

Softmax Regressions

Implementing the

TensorFlow Mechanics 101 This is a classic case where a softmax regression is a natural, simple model. If you want to assign probabilities to an Regression
tf.contrib.learn Quickstart object being one of several different things, softmax is the thing to do, because softmax gives us a list of values between Training
Building Input Functions with tf.contrib. 0 and 1 that add up to 1. Even later on, when we train more sophisticated models, the final step will be a layer of softmax. Evaluating Our Model

learn

Logging and Monitoring Basics with tf.
contrib.learn

TensorBoard: Visualizing Learning
TensorBoard: Embedding Visualization

TensorBoard: Graph Visualization

A softmax regression has two steps: first we add up the evidence of our input being in certain classes, and then we
convert that evidence into probabilities.

To tally up the evidence that a given image is in a particular class, we do a weighted sum of the pixel intensities. The
weight is negative if that pixel having a high intensity is evidence against the image being in that class, and positive if it is
evidence in favor.

The following diagram shows the weights one model learned for each of these classes. Red represents negative weights,
while blue represents positive weights.

0 1 2 3 4
5 6 7 8 9

We also add some extra evidence called a bias. Basically, we want to be able to say that some things are more likely
independent of the input. The result is that the evidence for a class % given an input x is:

evidence; = E Wi jx; + b;
J
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localhost ]

" Jupyter MNIST for beginners Last Checkpoint: 12/22/2017 (autosaved)

P Logout

File Edit View Insert Cell Kernel Help Trusted & |Python3 O
B + £ & B 4 % MRun B C Code | B
In [1): # import images and labels for training a softmax regression model to recognize MNIST digits;
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST data/", one_hot=True)
/anaconda3/envs/tensorflow/lib/python3.6/importlib/ bootstrap.py:219: RuntimeWarning: compiletime version 3.5 of modu
le 'tensorflow.python.framework.fast tensor_ util' does not match runtime version 3.6
return f(*args, **kwds)
Extracting MNIST data/train-images-idx3-ubyte.gz
Extracting MNIST data/train-labels-idxl-ubyte.gz
Extracting MNIST data/tl0k-images-idx3-ubyte.gz
Extracting MNIST data/tl0k-labels-idxl-ubyte.gz
In [2]): # create a softmax regression model by adding up evidence of pixel intensities and turning output into probabilities
# x image input y labels output, W learned positive/negative weights for class, b class bias independent of input, nom
import tensorflow as tf
x = tf.placeholder(tf.float32, [None, 784])
W = tf.vVariable(tf.zeros([784, 10]))
b = tf.variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
In [3): # train the model and define loss function to minimize cross entropy based on gradient descent
# y_predicted probability, y true distribution, loading 100 examples for each iteration
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed dict={x: batch_xs, y_: batch_ys})
In [4): # evaluate the accuracy of the model
correct_prediction = tf.equal(tf.argmax(y,1l), tf.argmax(y_,1))
accuracy = tf.reduce mean(tf.cast(correct_ prediction, tf.float32))
print(sess.run(accuracy, feed _dict={x: mnist.test.images, y_: mnist.test.labels}))
0.9186
In [ ]:
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TensorFlow ™

@ tensorflow.org ]
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Install r1.1 Develop 1.1 Deploy Extend 1 Q GITHUB

GET STARTED PROGRAMMER'S GUIDE TUTORIALS PERFORMANCE

Intro to Convolutional Neural Networks

Contents
Tutorials Getting Started
Using GPUs Convolutional neural networks (CNNs) are the current state-of-the-art model architecture for image classification tasks. Intro to Convolutional

Image Recognition

How to Retrain Inception's Final Layer

for New Categories

A Guide to TF Layers: Building a
Convolutional Neural Network

Convolutional Neural Networks
Vector Representations of Words
Recurrent Neural Networks

CNNs apply a series of filters to the raw pixel data of an image to extract and learn higher-level features, which the model
can then use for classification. CNNs contains three components:

e Convolutional layers, which apply a specified number of convolution filters to the image. For each subregion, the
layer performs a set of mathematical operations to produce a single value in the output feature map. Convolutional
layers then typically apply a RelLU activation function to the output to introduce nonlinearities into the model.

* Pooling layers, which downsample the image data extracted by the convolutional layers to reduce the

Neural Networks

Building the CNN
MNIST Classifier

Input Layer

Convolutional Layer
#1

Pooling Layer #1
Convolutional Layer

Sequence-to-Sequence Models dimensionality of the feature map in order to decrease processing time. A commonly used pooling algorithm is g and Pooling Layer
Large-acale Linear Models with max pooling, which extracts subregions of the feature map (e.qg., 2x2-pixel tiles), keeps their maximum value, and Dence Laver
TensorFlow discards all other values. =

Logits Layer

TensorFlow Linear Model Tutorial

TensorFlow Wide & Deep Learning
Tutorial

Mandelbrot Set
Partial Differential Equations

o Dense (fully connected) layers, which perform classification on the features extracted by the convolutional layers
and downsampled by the pooling layers. In a dense layer, every node in the layer is connected to every node in the
preceding layer.

Typically, a CNN is composed of a stack of convolutional modules that perform feature extraction. Each module consists
of a convolutional layer followed by a pooling layer. The last convolutional module is followed by one or more dense
layers that perform classification. The final dense layer in a CNN contains a single node for each target class in the
model (all the possible classes the model may predict), with a softmax activation function to generate a value between
0-1 for each node (the sum of all these softmax values is equal to 1). We can interpret the softmax values for a given
image as relative measurements of how likely it is that the image falls into each target class.

Calculate Loss

Configure the Training
Op

Generate Predictions

Training and Evaluating
the CNN MNIST
Classifier

Load Training and
Test Data

Create the Estimator

Set Up a Logging
Hook
. . ) . _ Train the Model
v Note: For a more comprehensive walkthrough of CNN architecture, see Stanford University's Convolutional Neural
, . , Evaluate the Model
Networks for Visual Recognition course materials.
Run the Model

Building the CNN MNIST Classifier

Let's build a model to classify the images in the MNIST dataset using the following CNN architecture:

1. Convolutional Layer #1: Applies 32 5x5 filters (extracting 5x5-pixel subregions), with ReLU activation function

2. Pooling Layer #1: Performs max pooling with a 2x2 filter and stride of 2 (which specifies that pooled regions do not
overlap)

3. Convolutional Layer #2: Applies 64 5x5 filters, with ReLU activation function
4. Pooling Layer #2: Again, performs max pooling with a 2x2 filter and stride of 2

5. Dense Layer #1: 1,024 neurons, with dropout reqularization rate of 0.4 (probability of 0.4 that any given element will
be dropped during training)

6. Dense Layer #2 (Logits Layer): 10 neurons, one for each digit target class (0-9).

Additional Resources

EriksholmResearchCentre
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Making Sense of Hidden Layers

Much of the recent work on interpretability is concerned with a neural network's input
and output layers. Arguably, this focus is due to the clear meaning these layers have: in
computer vision, the input layer represents values for the red, green, and blue color
channels for every pixel in the input image, while the output layer consists of class labels
and their associated probabilities.

However, the power of neural networks lies in their hidden layers — at every layer, the
network discovers a new representation of the input. In computer vision, we use neural
networks that run the same feature detectors at every position in the image. We can
think of each layer’s learned representation as a three-dimensional cube. Each cell in the
cube is an activation, or the amount a neuron fires. The x- and y-axes correspond to
positions in the image, and the z-axis is the channel (or detector) being run.

Individual Neurons Spatial Activations Channel Activations
channel 1
2 4 = -
3
NN RN
512 | )
e B H | =
TR S I,

The cube of activations that a neural network for computer vision develops at each hidden layer. Different
slices of the cube allow us to target the activations of individual neurons, spatial positions, or channels.

Making sense of these activations is hard because we
usually work with them as abstract vectors:

a1 = [0, 0, 0, 25.2,164.1, 0, 42.7, 4.51, 115.0, 51.3, ...
With feature visualization, however, we can transform this

abstract vector into a more meaningful "semantic
dictionary™.
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Activation Channels
Vector

Semantic dictionaries give us a fine-grained look at an
activation: what does each single neuron detect? Building
off this representation, we can also consider an activation
vector as a whole. Instead of visualizing individual
neurons, we can instead visualize the combination of
neurons that fire at a given spatial location. (Concretely,
we optimize the image to maximize the dot product of its
activations with the original activation vector.)

Applying this technique to all the activation vectors allows us to not only see what the
network detects at each position, but also what the network understands of the input

image as a whole.

=
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TensorFlow ™ Current master

Install master Develop master APl master Deploy master GITHUB

GET STARTED PROGRAMMER'S GUIDE TUTORIALS PERFORMANCE MOBILE HUB JAVASCRIPT

Tutorials

Images

MNIST

Image Recognition
Image Retraining

Convolutional Neural Networks

Sequences

Text Classification
Recurrent Neural Networks
Neural Machine Translation
Drawing Classification

Simple Audio Recognition

Data Representation

Linear Models

Wide & Deep Learning

Vector Representations of Words
Kernel Methods

Non-ML
Mandelbrot Set

Partial Differential Equations

The architecture used in this tutorial is based on some described in the paper Convolutional Neural Networks for Small-
footprint Keyword Spotting. It was chosen because it's comparatively simple, quick to train, and easy to understand,
rather than being state of the art. There are lots of different approaches to building neural network models to work with
audio, including recurrent networks or dilated (atrous) convolutions. This tutorial is based on the kind of convolutional
network that will feel very familiar to anyone who's worked with image recognition. That may seem surprising at first
though, since audio is inherently a one-dimensional continuous signal across time, not a 2D spatial problem.

We solve that issue by defining a window of time we believe our spoken words should fit into, and converting the audio
signal in that window into an image. This is done by grouping the incoming audio samples into short segments, just a
few milliseconds long, and calculating the strength of the frequencies across a set of bands. Each set of frequency
strengths from a segment is treated as a vector of numbers, and those vectors are arranged in time order to form a two-
dimensional array. This array of values can then be treated like a single-channel image, and is known as a spectrogram. If
you want to view what kind of image an audio sample produces, you can run the "wav_to_spectrogram tool:

bazel run tensorflow/examples/wav_to_spectrogram:wav_to_spectrogram -- \
--input_wav=/tmp/speech_dataset/happy/abB8c4b2_nohash_8.wav \
--output_png=/tmp/spectrogram.png

If you openup /tmp/spectrogram.png you should see something like this:

Because of TensorFlow's memory order, time in this image is increasing from top to bottom, with frequencies going from
left to right, unlike the usual convention for spectrograms where time is left to right. You should be able to see a couple
of distinct parts, with the first syllable "Ha" distinct from “ppy”".

Because the human ear is more sensitive to some frequencies than others, it's been traditional in speech recognition to
do further processing to this representation to turn it into a set of Mel-Frequency Cepstral Coefficients, or MFCCs for
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We can visualize the learned vectors by projecting them down to 2 dimensions using for instance something like the t- Contents
Tutorials SNE dimensionality reduction technique. When we inspect these visualizations it becomes apparent that the vectors Highlights
Sl Bt capture some general, and in fact quite useful, semantic information about words and their relationships to one another. Motivation: Why Learn
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This explains why these vectors are also useful as features for many canonical NLP prediction tasks, such as part-of-
speech tagging or named entity recognition (see for example the original work by Collobert et al, 2011 (pdf), or follow-up
work by Turian et al., 2010).

But for now, let’s just use them to draw pretty pictures!

Building the Graph

This is all about embeddings, so let's define our embedding matrix. This is just a big random matrix to start. We'll
initialize the values to be uniform in the unit cube.

embeddings = tf.Variable(
tf.random_uniform([vocabulary_size, embedding_size], -1.8, 1.8))

The noise-contrastive estimation loss is defined in terms of a logistic regression model. For this, we need to define the
weights and biases for each word in the vocabulary (also called the output weights as opposed to the input
embeddings ). So let's define that.

nce_weights = tf.Variable(

tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.8 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
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Sequence-to-sequence basics

A basic sequence-to-sequence model, as introduced in Cho et al, 2014 (pdf), consists of two recurrent neural networks
(RNNs): an encoder that processes the input and a decoder that generates the output. This basic architecture is depicted
below.

—
——
N

A B Cc <w> w X Y Zz

Each box in the picture above represents a cell of the RNN, most commonly a GRU cell or an LSTM cell (see the RNN
Tutorial for an explanation of those). Encoder and decoder can share weights or, as is more common, use a different set
of parameters. Multi-layer cells have been successfully used in sequence-to-sequence models too, e.qg. for translation
Sutskever et al., 2014 (pdf).

In the basic model depicted above, every input has to be encoded into a fixed-size state vector, as that is the only thing
passed to the decoder. To allow the decoder more direct access to the input, an attention mechanism was introduced in
Bahdanau et al., 2014 (pdf). We will not go into the details of the attention mechanism (see the paper); suffice it to say
that it allows the decoder to peek into the input at every decoding step. A multi-layer sequence-to-sequence network with
LSTM cells and attention mechanism in the decoder looks like this.

———e g ———— ¢
LSTM}, > LSTM;,,,
T T T T T T T T T
LSTMZ, > LSTMZ,,,
T T ) ] T T T T T
LSTM}, ) LSTM! ,
+* +* +* + * * + + *

TensorFlow seq2seq library

As you can see above, there are many different sequence-to-sequence models. Each of these models can use different
RNN cells, but all of them accept encoder inputs and decoder inputs. This motivates the interfaces in the TensorFlow
seq2seq library ( tensorflow/tensorflow/python/ops/seq2seq.py ). The basic RNN encoder-decoder sequence-to-
sequence model works as follows.

outputs, states = basic_rnn_seq2seq(encoder_inputs, decoder_inputs, cell)
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Wiume and program inferactions

An additiona parameter 1o nvestigate when modeling the
behavioral patierns are the wolume change interactions

The volume inferaction can be inerpreted as a fine tuning
of he desred auditory scene, by Increasng or decreasing
he intensity, hus zooming in or out of an audtory scene. In
Figure 3 a comparison of the 5 test subjects and thair us
age of wiume with respect 1o program can be cbserved
The light to dark blue colors reflect decreasing wolume.
while the yellow o orange gradients reflect an increase in
gain. It can be cbserved that mos! subjects decrease the
wlume in P1 during the weekend. Subject 4 prefers 1o pri
marily reduce the volume, in contrast with Subject 5 which
prefers 1o mostly increase the volume. In hese cases we
hypothesize hat he gan setings of the devices might need
© be adusted. Subject 1 adusts the volume both up and
down from Monday through Friday, whereas the volume is
only decreased during weekends

While the above user interaction over a 10 week penod can
be inferred directy from the program change and volume
adjsiment, we subsequenty in bllow-wp audivlogical ses
sions with he subjects bund that the behavioral patterns
were aigned with the aggregated program usage history
data continuwously collected over 4 months by the devices
Subsequenty we interviewed the test subjects 1o delermine
what defined ther program and wiume preferences. The
P1 program was preferred in most kstening scenarios be
cause it alows the users  selecively shift their attention
omndirectionally 1o any sound sources. However, when en
countering more challenging acousical environments, the
fhree diemative program setlings were salected, whether
he aim was 1o enhance speech inteligbility, atenuate am
bent sounds or remove background noise. Additionally

users increased or reduced he parcevad loudness of these
sattings by continuously adjusting the volume.

Perspectives

These resulls indicate that the users predominanty pre-
ferrad to combine wiume adusiments with sattings provid-
ing an open frontal focus coupled with a natural atienuation
of ambient sounds in 74% of e usage Ime. This difer
from earler studes reporing that an omnidractiona fo-
cus was only chosen in respectivaly 37% [11] and 33%[1]
of kstening scenarnos. In contast to earker sudes using
simulated sound environments 2] our findings are basad
on the actual acoustic environments encounterad by users
over severa weeks of usage. It is difficult to compare these
studes, as the data generatad in owr study represent snap-
shots of user intents riggerad by the changing auditory
context throughout daily e. When comparad to sariier
sudes, the quality of sound enabled by recent advances
in digtal sgna processng providad by the state of the art

Johansen et al: “Rethinking hearing aid fitting by learning form behavioral patterns” , 2017
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Figure 2: Time series data combining the contextual soundscape data captured from the HA (green gradient) with the corresponding
interactions related to the user selected programs (yellow-red gradient) for subject 1 (top) and 2 (bottom).

The resulting four soundscape clusters were labeled accord-
ing to the proportion of samples with different ground-truth
labels within each cluster ( Figure 1) while ambiguities were
solved by examination of the cluster centroids. The first clus-
ter mainly captured the "quiet’ class which is also validated by
the cluster centroid having very low values of sound pressure
level and noise floor. Thus, the environments assigned to this
cluster will be represented as "quiet’. The second cluster cap-
tured both “speech in noise” and "noise” classes which suggests
that the numerical representations of these environments are
similar. For simplicity. we label them as “speech in noise’. The
third and fourth cluster both captured mainly ‘speech in quiet’
with a small addition of other classes. As the third cluster
captured samples with much higher sound pressure level and
signal to noise ratio, it will be labeled as “clear speech’. while
the fourth cluster with attributes of the samples closer to mean
will be represented as “normal speech’.

RESULTS

We refer to the user’s selected volume and program choice
as user preferences. and to the corresponding auditory envi-
ronment as the context. Juxtaposing user preferences and the
context allows us to leam which HA settings are selected in
specific listening scenarios. To facilitate interpretation we
assign each cluster a color from white to green gradient. in
which increasing darkness correspond to increased noise in
the context (quiet — clean speech — normal speech — speech
in noise). Likewise. we assign each program a color from
yellow to red gradient. Lighter colors define programs with
an omnidirectional focus and added brightness. Darker colors
indicate increasing attenuation of noise. This coloring scheme
will apply throughout the paper.

Contextual user preferences
Figure 2 shows the user preference and context changes for

both subjects. plotted across the hours of the day over the
weeks constituting the full experimental period. Subject 1
most frequently selects programs which provide an omnidi-

Korzepa et al: “Learning preferences and soundscapes for augmented hearing” , 2018



ENVIRONMENT Quiet Speech
LOCATION L1 L2 B s
ACTIVITY Walking - RuNNing
PLACE TYPE Bus_Station Bicycle_Store
PROGRAM P1 P2

ENVIRONMENT -

12:00 14:00 16:00 18:00 20:00 22:00 00:00

Figure 1: Example of user setting preferences (four programs - P1-P4) juxtaposed with different types of context captured
in a continuous manner for a period of 12 hours. Environment is obtained through HA’ in-built environment classification,
location is represented as cluster membership based on HDBSCAN clustering, activity was estimated by Google’s Activity
Recognition API and place type was queried using Google Places API.

Korzepa et al: “Modeling user intents as context in smartphone connected hearing aids” , 2018
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