
The Power of Algorithms
(solving scalability of video streaming)

Mikkel Thorup

Center for Basic Algorithms Research Copenhagen

The amount of data grows much faster than computer
speeds, so need for efficient algorithms to process data
becomes more and more urgent.

Algorithms to handle BIG data

CO2

I am particularly fascinated by the use
of randomness in computation.

Almost everything is simpler and faster with
randomized algorithms. Big Data cannot be
handled without randomness.

Randomized Algorithms

1 5 9

2 6 10

3 7 11

4 8 12

Distribute objects
in storage boxes.

Office

Animals

What happens on a farm?

1 5 9

2 6 10

3 7 11

4 8 12

Distribute objects
in storage boxes.

Where did we put ?

Where is ?

G

A

B

C

D

E

F

1 2 3 4 5 6 7 8 9 10 11 12

A2

Fully-Random Hash Functions
What we want is a re-computable fully-random
hash function h assigning independent random
box number 1,…,12 to every possible object:

h() = h() =10 4

With 18 other objects, on average expected
to share box with 18/12=1.5 objects.

h() = h() with probability 1/12.

IMPOSSIBLE
Fully-Random Hash Functions

What we want is a re-computable fully-random
hash function h assigning independent random
box number 1,…,12 to every possible object:

h() = h() =10 4

With 18 other objects, on average expected
to share box with 18/12=1.5 objects.

h() = h() with probability 1/12.

10 4

Pick two random , < 1009 (prime)

Random Hash Functions
Re-computable random hash function h
assigning random box 1,…,12 to every object.

On computer objects have numbers: 385, 936

749945

h(385) = (((× 385 +)
mod 1009) mod 12) + 1 = 2

945 749

h(936) = (((× 936 +)
mod 1009) mod 12) + 1 = 5

945 749
= prob < 1/12

≠ 0

1 5 9

2 6 10

3 7 11

4 8 12

Distribute objects
in storage boxes.

(((× +)

mod 1009) mod 12) +1

679 495

936 385

218 504

936

= 10

218

= 3
Used to store and find things
in computers since 1956.

Example using my own research

Company Vimeo

Main competitor of YouTube – 170 million users/month.

Serves about 1 billion requests for video clips per day.

Key technology: Consistent hashing

Vimeo’s bandwidth bottleneck

Issue: High
bandwidth
requirement…

From algorithm theory to industrial reality

Eliminating the bandwidth bottleneck

New algorithmOld algorithm

switch

Classic Consistent Hashing (unbounded loads)

• Problem:
– Assign clients to servers so server of client easy to

find.

– Dynamic system where both clients and servers
can join and leave.

– Reassign as few clients as possible.

• Algorithmic Solution:
– Map clients and servers to cycle using random

hash function.

– Client goes clockwise to first server.

Consistent hashing (unbounded loads)

Clients 1,2,3,4,5,6,7,8
Servers A,B,C,D

C

Ser ver s A, B, C, D

B

D

4

2

A

1

5

3

6

8

7

Map to cycle with
hash function.

Client clock-wise to
first server.

Consistent hashing (unbounded loads)

Clients 1,2,3,4,5,6,7,8
Servers A,B,C,D

C

Ser ver s A, B, C, D

B

D

4

2

A

1

5

3

6

8

7

1

2

3

4

5

6

7

8

Map to cycle with
hash function.

Client clock-wise to
first server.

Consistent hashing (unbounded loads)

Clients 1,2,3,4,5,6,7,8
Servers A,B,C,D

C

Ser ver s A, B, C, D

B

D

A

Map to cycle with
hash function.

Client clock-wise to
first server.

1

2

3

4 5

6

7

8

Who serves client x?

x

x?

y?

y?

y

Consistent hashing (unbounded loads)

Clients 1,2,3,4,5,6,7,8
Servers A,B,C,D

C

B

D

4

2

A

1

5

3

6

8

7

Map to cycle with
hash function.

Client clock-wise to
first server.

1

2

3

4 5

6

8

Server D leaves

/
7

If server D arrives, we do the opposite

Consistent hashing (unbounded loads)

Clients 1,2,3,4,5,6,7,8
Servers A,B,C,D

C

Ser ver s A, B, C, D

B

D

A

Map to cycle with
hash function.

Client clock-wise to
first server.

1

2

3

4 5

6

7

8

Consistent hashing (unbounded loads)

Clients 1,2,3,4,5,6,7,8
Servers A,B,C,D

C

Ser ver s A, B, C, D

B

D

A

Aver. load 8/4= 2

Map to cycle with
hash function.

Client clock-wise to
first server.

1

2

3

4 5

6

7

8

Twice average load

Consisten Hashing (Unbounded Loads)

If we randomly place n servers on cycle, and
each covers segment from preceeding server,
then expect some server to cover fraction

(ln n)/n

Such server expected to get (ln n) times the
average load.

ln 1000 = 7, ln 1000000 = 14.

Consistent hashing with bounded loads

• Problem:

– Assign clients to servers: server of client easy to find.

– Dynamic system where both clients and servers can
join and leave. Reassign as few clients as possible.

– No server has more than 1.5 × average number of
clients (the load bound).

• Our Algorithmic Solution:

– Map clients and servers to cycle using random hash
function.

– Client goes clockwise to first non-full server.

Consistent hashing with bounded loads

Clients 1,2,3,4,5,6,7,8
Servers A,B,C,D

C

Ser ver s A, B, C, D

B

D

4

2

A

Aver. load 8/4= 2
Max load 1.5×2=3

1

5

3

6

8

7

Map to cycle with
hash function.

Client clock-wise to
first non-full server.

Consistent hashing with bounded loads

Clients 1,2,3,4,5,6,7,8
Servers A,B,C,D

C

Ser ver s A, B, C, D

B

D

4

2

A

Aver. load 8/4= 2
Max load 1.5×2=3

1

5

3

6

8

7

1

2

3

4

5

6

7

8

Map to cycle with
hash function.

Client clock-wise to
first non-full server.

Consistent hashing with bounded loads

Clients 1,2,3,4,5,6,7,8
Servers A,B,C,D

C

Ser ver s A, B, C, D

B

D

A

Aver. load 8/4= 2
Max load 1.5×2=3

Map to cycle with
hash function.

Client clock-wise to
first non-full server.

1

2

3

4 5

6

7

8

Who serves client x?

x

x?

y?

y?

y
y?

Aver. load 8/3
Max load 1.5×8/3=4

Consistent hashing with bounded loads

Clients 1,2,3,4,5,6,7,8
Servers A,B,C,D

C

B

D

4

2

A

Aver. load 8/4= 2
Max load 1.5×2=3

1

5

3

6

8

7

Map to cycle with
hash function.

Client clock-wise to
first non-full server.

1

2

3

4 5

6

7

8

Server D leaves

/

- more complicated ..

How many full passed on way to non-full ?

Clients 1,2,3,4,5,6,7,8
Servers A,B,C,D

C

Ser ver s A, B, C, D

B

D

4

2

A

Aver. load 8/4= 2
Max load 1.5×2=3

1

5

3

6

8

7

1

2

3

4

5

6

7

8

Map to cycle with
hash function.

Client clock-wise to
first non-full server.

Cost of Consistent hashing with bounded loads

1

Consistent hashing with bounded loads

Theorem With load-bound = 1 + ε × aver-load, the
expected number of full servers passed to non-full is
proportional to 1/𝜀2.

For example, with ε = 0.1 = 10%, 1/𝜀2=100

The bound holds no matter the number of clients and
servers which for Vimeo approaches billions.

• Our algorithm has no details
specific to video streaming.
Works for any dynamic
allocation system in the world –
now used also in Google’s cloud
and other companies.

• Mathematical analysis based on
properties of degree-4
polynomials with random
coefficients – the theory of
which was originally developed
with other applications in mind.

Basic algorithmic research with many applications

Consistent hashing with bounded loads

Theorem With load-bound = 1 + ε × aver-load, the expected
number of full servers passed to non-full is proportional to 1/𝜀2.

Recent improvement with new algorithm to:

Theorem With load-bound = 1 + ε × aver-load, the expected
number of full servers passed to non-full is proportional to 1/ε

For example, with ε = 0.01 = 1%,
1/𝜀2 = 10000 improved to 1/ε = 100

The new bound is the best possible. Nothing better can ever be done.

Energy saving in servers

• Green line is when clients served locally. Yellow is remote.
• Server farms emit more CO2 than all air traffic.

CO2

