The Power of Algorithms (solving scalability of video streaming)

Mikkel Thorup

Center for Basic Algorithms Research Copenhagen

Algorithms to handle BIG data

Powered by Mathematics

The amount of data grows much faster than computer speeds, so need for efficient algorithms to process data becomes more and more urgent.

Randomized Algorithms

I am particularly fascinated by the use of randomness in computation.

Almost everything is simpler and faster with randomized algorithms. Big Data cannot be handled without randomness.

Distribute objects in storage boxes.

What happens on a farm?

1 Animals	5	9
2 Office	6	10
3	7	11
4	8	12

Distribute objects in storage boxes.

?

Fully-Random Hash Functions

What we want is a re-computable fully-random hash function h assigning independent random box number 1,...,12 to every possible object:

Fully-Random Hash Functions

What we want is a **re-computable** fully-random hash function b assigning independent random box number 1,...,12 to every possible object:

Random Hash Functions

Re-computable random hash function h assigning random box 1,...,12 to every object.

385,

On computer objects have numbers:

Distribute objects in storage boxes.

=130 Used to store and find things in computers since 1956.

1	5	9
2	6	10
3	7	11
4	8	12

Example using my own research Company Vimeo

Main competitor of YouTube – 170 million users/month. Serves about 1 billion requests for video clips per day.

Key technology: Consistent hashing

Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications

Ion Stoica; Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan[†] MIT Laboratory for Computer Science chord@lcs.mit.edu http://pdos.lcs.mit.edu/chord/

Abs A <u>fu</u>	stract	and involves relatively little movement of k and leave the system.	eys when nodes j	join
to e par this	Title 1–20		Cited by	Year
a k imp iter key sys cha ACM SIGCOMM Computer Communication Rev per		o service for internet Balakrishnan eview 31 (4), 149-160	12552	2001
and t the n	he state maintained by each node scaling logarithmically with umber of Chord nodes.	event results in no more than $O(\log^2 N)$ mes Three features that distinguish Chord from peer lookup protocols are its simplicity, prov	sages. n many other peer vable correctness,	-to- and

Vimeo's bandwidth bottleneck

From algorithm theory to industrial reality

Vimeo Engineering Blog 🛛 🕞 🚱

Improving load balancing with a new consistent-hashing algorithm

We run Vimeo's dynamic video packager, Skyfire, in the cloud, serving Cornell Uni almost a billion DASH and HLS requests per day. That's a lot! We're very happy with the way that it performs, but scaling it up to today's traffic and beyond has been an interesting challenge. Today I'd like to talk about a new arXiv.org > cs > arXiv:algorithmic development, bounded-load consistent hashing, and how it eliminates a bottleneck in our video delivery.

Computer Science > Data Structures and Algorithms

Consistent Hashing with Bounded Loads

Vahab Mirrokni, Mikkel Thorup, Morteza Zadimoghaddam

(Submitted on 3 Aug 2016)

Library

Eliminating the bandwidth bottleneck

Read bandwidth by server

Classic Consistent Hashing (unbounded loads)

- Problem:
 - Assign clients to servers so server of client easy to find.
 - Dynamic system where both clients and servers can join and leave.
 - Reassign as few clients as possible.
- Algorithmic Solution:
 - Map clients and servers to cycle using random hash function.
 - Client goes clockwise to first server.

Consistent hashing (unbounded loads)

Consistent hashing (unbounded loads)

Consistent hashing (unbounded loads)

Consisten Hashing (Unbounded Loads)

If we randomly place n servers on cycle, and each covers segment from preceeding server, then expect some server to cover fraction

<mark>(ln n)</mark>/n

Such server expected to get (In n) times the average load.

ln 1000 = 7, ln 1000000 = 14.

- Problem:
 - Assign clients to servers: server of client easy to find.
 - Dynamic system where both clients and servers can join and leave. Reassign as few clients as possible.
 - No server has more than 1.5 × average number of clients (the load bound).
- Our Algorithmic Solution:
 - Map clients and servers to cycle using random hash function.
 - Client goes clockwise to first non-full server.

Who serves client x? y?

Cost of Consistent hashing with bounded loads How many full passed on way to non-full? 1

Theorem With load-bound = $(1 + \varepsilon)$ × aver-load, the expected number of full servers passed to non-full is proportional to $1/\varepsilon^2$.

For example, with $\varepsilon = 0.1 = 10\%$, $1/\varepsilon^2 = 100$

The **bound** holds no matter the number of clients and servers which for Vimeo approaches billions.

Basic algorithmic research with many applications

- Our algorithm has no details specific to video streaming. Works for *any* dynamic allocation system in the world – now used also in Google's cloud and other companies.
- Mathematical analysis based on properties of degree-4 polynomials with random coefficients – the theory of which was originally developed with other applications in mind.

Lemma 10. The expected number of balls hashing directly to any expected number of balls forwarded into q from its predecessor q^- is not active, and its active successor q^+ is given an extra capacity of or bins starting from q^+ is $O((\log c)/c^2)$.

Proof. For the first statement, we note that the expected number of bal n/r for any $0 \le i \le r$. These are not added to q if some bin hash to [h] event because balls and bins hash independently. The expected numb is $\mu = i(n-1)/r$. For $i \ge r/(n-1)$, we have $\mu \ge 1$, and then, by in [h(q) - i, h(q)) is $O((\mu + \mu^2)/(\mu - 0)^4) = O(1/\mu^2) = O((r/(n+1))/r)$ hashing directly to q is thus bounded by

$$n/r \cdot \left(\lfloor r/(n-1)
floor + \sum_{i=\lfloor r/(n-1)
floor+1}^{\infty} (r/(ni))^2
ight)$$

We also have to consider the probability that the preceding bin q^- for we would need q^- to be filled even if we increased its capacity by 1 least 2. This is bounded by the probability of having an interval $I \ni$ bins including one with capacity at least 2. This is what we analyzed $\Pr[d \ge 1] \le \mathbf{E}[d] = O((\log c/c^2))$. By the capacity constraint, the forwarded to and end in q is 2cm/n, so the expected number is

$$O((\log c/c^2)2cm/n = O((m/n)(\log$$

Next we ask for the expected number d of full bins starting from the a bin q, when q^+ is given an extra capacity of one. Again this implies th the analysis from the proof of Lemma 9 implies that $\mathbf{E}[d] = O((\log c))$

Theorem With load-bound = $(1 + \varepsilon) \times \text{aver-load}$, the expected number of full servers passed to non-full is proportional to $1/\varepsilon^2$.

Recent improvement with new algorithm to:

Theorem With load-bound = $(1 + \varepsilon) \times \text{aver-load}$, the expected number of full servers passed to non-full is proportional to $1/\varepsilon$

For example, with $\varepsilon = 0.01 = 1\%$, $1/\varepsilon^2 = 10000$ improved to $1/\varepsilon = 100$

The new bound is the best possible. Nothing better can ever be done.

Energy saving in servers

- Green line is when clients served locally. Yellow is remote.
- Server farms emit more CO₂ than all air traffic.

