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The amount of data grows much faster than computer 
speeds, so need for efficient algorithms to process data 
becomes more and more urgent.

Algorithms to handle BIG data
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I am particularly fascinated by the use 
of randomness in computation.

Almost everything is simpler and faster with 
randomized algorithms. Big Data cannot be 
handled without randomness.

Randomized Algorithms
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Fully-Random Hash Functions
What we want is a re-computable fully-random 
hash function h assigning independent random 
box number 1,…,12 to every possible object:

h(         ) = h(         ) =10 4

With 18 other objects, on average        expected 
to share box with 18/12=1.5 objects.

h(        ) = h(        ) with probability 1/12.



IMPOSSIBLE
Fully-Random Hash Functions

What we want is a re-computable fully-random 
hash function h assigning independent random 
box number 1,…,12 to every possible object:

h(         ) = h(         ) =10 4

With 18 other objects, on average        expected 
to share box with 18/12=1.5 objects.

h(        ) = h(        ) with probability 1/12.

10 4



Pick two random                ,                 <  1009 (prime)

Random Hash Functions
Re-computable random hash function h
assigning random box 1,…,12 to every object.

On computer objects have numbers:    385,   936

749945

h( 385 ) = (((           × 385 +            ) 
mod 1009) mod 12) + 1 = 2

945 749

h( 936 ) = (((           × 936 +            ) 
mod 1009) mod 12) + 1 = 5

945 749
=  prob < 1/12

≠ 0



1 5 9

2 6 10

3 7 11

4 8 12

Distribute objects 
in storage boxes.

(((         × +               )

mod 1009) mod 12) +1

679 495

936 385

218 504

936

= 10 

218

= 3
Used to store and find things 
in computers since 1956.



Example using my own research 

Company Vimeo

Main competitor of YouTube – 170 million users/month.

Serves about 1 billion requests for video clips per day.



Key technology: Consistent hashing



Vimeo’s bandwidth bottleneck

Issue: High 
bandwidth 
requirement…



From algorithm theory to industrial reality



Eliminating the bandwidth bottleneck

New algorithmOld algorithm

switch



Classic Consistent Hashing (unbounded loads)

• Problem:
– Assign clients to servers so server of client easy to 

find.

– Dynamic system where both clients and servers 
can join and leave. 

– Reassign as few clients as possible.

• Algorithmic Solution: 
– Map clients and servers to cycle using random 

hash function.

– Client goes clockwise to first server.
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Consistent hashing (unbounded loads)
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Consisten Hashing (Unbounded Loads)

If we randomly place n servers on cycle, and 
each covers segment from preceeding server, 
then expect some server to cover fraction 

(ln n)/n

Such server expected to get (ln n) times the 
average load.

ln 1000 = 7, ln 1000000 = 14.



Consistent hashing with bounded loads

• Problem:

– Assign clients to servers: server of client easy to find.

– Dynamic system where both clients and servers can 
join and leave. Reassign as few clients as possible.

– No server has more than 1.5 × average number of 
clients (the load bound). 

• Our Algorithmic Solution: 

– Map clients and servers to cycle using random hash 
function.

– Client goes clockwise to first non-full server.
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Aver. load  8/3
Max load 1.5×8/3=4

Consistent hashing with bounded loads
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How many full passed on way to non-full ?
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Cost of Consistent hashing with bounded loads
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Consistent hashing with bounded loads

Theorem With load-bound = 1 + ε × aver-load, the 
expected number of full servers passed to non-full is 
proportional to 1/𝜀2. 

For example, with ε = 0.1 = 10%, 1/𝜀2=100

The bound holds no matter the number of clients and 
servers which for Vimeo approaches billions.



• Our algorithm has no details 
specific to video streaming. 
Works for any dynamic 
allocation system in the world –
now used also in Google’s cloud 
and other companies.

• Mathematical analysis based on 
properties of degree-4 
polynomials with random 
coefficients – the theory of 
which was originally developed 
with other applications in mind.

Basic algorithmic research with many applications



Consistent hashing with bounded loads

Theorem With load-bound = 1 + ε × aver-load, the expected 
number of full servers passed to non-full is proportional to 1/𝜀2.  

Recent improvement with new algorithm to:

Theorem With load-bound = 1 + ε × aver-load, the expected 
number of full servers passed to non-full is proportional to 1/ε

For example, with ε = 0.01 = 1%, 
1/𝜀2 = 10000 improved to 1/ε = 100

The new bound is the best possible. Nothing better can ever be done.



Energy saving in servers

• Green line is when clients served locally. Yellow is remote.
• Server farms emit more CO2 than all air traffic.
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