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A change in our demography
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The population is getting older

In 2025 the number of citizens aged 0-64 will be the same 

as in 2010. 

- but the number of citizens aged 75-84 will have increased 

by 75 percent. 

à Less tax payers and fewer health care workers

- and more people will suffer from chronic 

diseases

From 2013 to 2025 the number of citizens living with the most 

common chronic diseases is expected to increase by 60 pct. 
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A change in our structuring of hospitals

Source: Digital Health Strategy 2018-2022, Danish Ministry of Health, 2018.



A change in hospitalisation and technology

Key numbers 
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DEMOGRAPHIC CHALLENGES AND STRUCTURAL TRANSFORMATIONS

There is no real alternative to increased digital cooperation

The percentage of elderly people will increase

More people will live with a chronic disease 

Fewer, larger and more specialised hospitals

Patient pathways will be faster

More treatment will take place in the patient’s home

Source: Digital Health Strategy 2018-2022, Danish Ministry of Health, 2018.



CONFIDENTIAL18

Personalized technology
Engaging, patient-centric, and 
participatory technology can 
deliver interventions tailored to 
the individual and sustain 
engagement “beyond-the-pill” 
outside traditional care settings.

Digitalization
The ubiquity of digital health and 
communication technology drive 
new models for virtual and 
semi-automated doctor-patient 
contact.

Health IoT
Pervasive, mobile and wearable 
technology for sensing and 
engaging with patients create a 
unique platform for personalized 
health delivery

Big data analytics
Computing power and advanced 
analytics and learning algorithms 
drive insight and prediction of 
patient behavior, treatment, and 
care costs

Technology Opportunities

Chronic diseases management
Accounting for 2/3 of all 
healthcare spend worldwide – 
and increasing – chronic disease 
management is and will be the 
main focus of health.

Preventive and predictive health
Obesity, lack of physical activity 
and unhealthy lifestyle are the 
major factors for health problems 
and needs to be addressed early

Regulatory
Legal and regulatory demands for 
protecting patient privacy, data, 
and safety will be enforced 
heavily as digital and 
personalized health emerge

Evidence & outcome-based 
health
New business models both for 
suppliers and vendors will be tied 
to clinical evidence and real-world 
patient outcome (efficiency)

Healthcare Challenges
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Artificial intelligence: A definition
AI is typically defined as the ability of a machine to perform cognitive functions we associate with human minds, such 
as perceiving, reasoning, learning, and problem solving. Examples of technologies that enable AI to solve business 
problems are robotics and autonomous vehicles, computer vision, language, virtual agents, and machine learning.

Machine learning: A definition
Most recent advances in AI have been achieved by applying machine learning to very large data sets. Machine-
learning algorithms detect patterns and learn how to make predictions and recommendations by processing data and 
experiences, rather than by receiving explicit programming instruction. The algorithms also adapt in response to new 
data and experiences to improve efficacy over time.  

An executive’s guide to AI
Staying ahead in the accelerating artificial-intelligence race requires 
executives to make nimble, informed decisions about where and how to 
employ AI in their business. One way to prepare to act quickly: know the 
AI essentials presented in this guide.

McKinsey Analytics An executive’s guide to AI

Source: An executive’s guide to AI. McKinsey & Co., 2019
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What it is

When to 
use it

How it 
works

An algorithm uses training data 
and feedback from humans to 
learn the relationship of given 
inputs to a given output (eg, how 
the inputs “time of year” and 
“interest rates” predict housing 
prices)

You know how to classify the 
input data and the type of 
behavior you want to predict, 
but you need the algorithm to 
calculate it for you on new data 

1. A human labels every 
element of the input 
data (eg, in the case of 
predicting housing prices, 
labels the input data as 
“time of year,” “interest 
rates,” etc) and defines 
the output variable (eg, 
housing prices)

2. The algorithm is trained 
on the data to find the 
connection between the 
input variables and the 
output

3. Once training is complete—
typically when the 
algorithm is sufficiently 
accurate—the algorithm is 
applied to new data

An algorithm explores input 
data without being given 
an explicit output variable 
(eg, explores customer 
demographic data to 
identify patterns)

You do not know how to 
classify the data, and you 
want the algorithm to find 
patterns and classify the 
data for you

1. The algorithm receives 
unlabeled data (eg, a 
set of data describing 
customer journeys on a 
website)

2. It infers a structure from 
the data

3. The algorithm identifies 
groups of data that 
exhibit similar behavior 
(eg, forms clusters 
of customers that 
exhibit similar buying 
behaviors)

An algorithm learns to perform 
a task simply by trying to 
maximize rewards it receives 
for its actions (eg, maximizes 
points it receives for increasing 
returns of an investment 
portfolio)

You don’t have a lot of training 
data; you cannot clearly define the 
ideal end state; or the only way to 
learn about the environment is to 
interact with it

1. The algorithm takes an 
action on the environment 
(eg, makes a trade in a 
financial portfolio)

2. It receives a reward if the 
action brings the machine 
a step closer to maximizing 
the total rewards available 
(eg, the highest total return 
on the portfolio)

3. The algorithm optimizes for 
the best series of actions by 
correcting itself over time

Supervised learning Reinforcement learningUnsupervised learning

Understanding the major types of machine learning

McKinsey Analytics An executive’s guide to AI

Source: An executive’s guide to AI. McKinsey & Co., 2019
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AI in Healthcare

• Screening / Prevention
– early detection / classification / prediction of disease progression (e.g. mental health)
– image screening (e.g. breast cancer)

• Diagnosis
– clinical decision support systems (e.g. diabetes)
– image analysis (e.g. radiology, MR, PET, CT)

• Treatment & Care
– treatment / medication prescription (e.g. oncology)
– robot surgery
– speech interfaces @home

14



Danmarks Tekniske Universitet2. april 2019

Mobility & Depression
• “significant correlation between mobility trace 

characteristics and depressive moods”

• “possible to develop inference algorithms for 
unobtrusive monitoring and prediction of 
depressive mood disorders”

Trajectories of Depression:
Unobtrusive Monitoring of Depressive States by means of

Smartphone Mobility Traces Analysis
Luca Canzian

University of Birmingham, UK
l.canzian@cs.bham.ac.uk

Mirco Musolesi
University College London, UK
University of Birmingham, UK

m.musolesi@ucl.ac.uk

ABSTRACT
One of the most interesting applications of mobile sensing is
monitoring of individual behavior, especially in the area of
mental health care. Most existing systems require an interac-
tion with the device, for example they may require the user
to input his/her mood state at regular intervals. In this paper
we seek to answer whether mobile phones can be used to un-
obtrusively monitor individuals affected by depressive mood
disorders by analyzing only their mobility patterns from GPS
traces. In order to get ground-truth measurements, we have
developed a smartphone application that periodically collects
the locations of the users and the answers to daily question-
naires that quantify their depressive mood. We demonstrate
that there exists a significant correlation between mobility
trace characteristics and the depressive moods. Finally, we
present the design of models that are able to successfully pre-
dict changes in the depressive mood of individuals by analyz-
ing their movements.

Author Keywords
Mobile Sensing; Depression; Spatial Statistics; GPS Traces

ACM Classification Keywords
H.1.2. Models and Principles: User/Machine Systems; J.4
Computer Applications: Social and Behavioral Sciences

INTRODUCTION
According to a recent report by the World Health Organiza-
tion [9], in high-income countries up to 90% of people who
die by suicide are affected by mental disorders, and depres-
sion is the most common mental disorder associated with sui-
cidal behavior. More generally, depressive disorders do not
only affect the personal life of individuals and their families
and social circles, but they also have a strong negative eco-
nomic impact [28]. In fact, according to a study by the Eu-
ropean Depression Association [9], 1 in 10 employees in the
United Kingdom had taken time off at some point in their
working lives because of depression problems. Currently,
psychologists rely mainly on self-assessment questionnaires

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UbiComp ’15, September 07-11, 2015, Osaka, Japan
c� 2015 ACM. ISBN 978-1-4503-3574-4/15/09 $15.00

DOI: http://dx.doi.org/10.1145/2750858.2805845

and phone/in-site interviews to diagnose depression and mon-
itor its evolution. This methodology is time-consuming, ex-
pensive, and prone to errors, since it often relies on the
patient’s recollections and self-representation. As a conse-
quence, changes in the depression state may be detected with
delay, which makes intervention and treatment more difficult.

Several recent projects have investigated the potential use
of mobile technologies for monitoring stress, depression and
other mental disorders (see, for example, [25, 6, 31, 24, 36, 1,
5, 39], providing new ways for supporting both patients and
healthcare officers [8, 20]. Indeed, mobile phones are ubiqui-
tous and highly personal devices, equipped with sensing ca-
pabilities, which are carried by their owners during their daily
routine [19]. However, existing works mostly rely on periodic
user interaction and self-reporting. Our goal is to build sys-
tems that minimize and, if possible, remove the need for user
interaction.

We focus on a specific type of data that can be reliably col-
lected by almost any smartphone in a robust way, namely
location information, and we investigate how it is possible
to correlate characteristics of human mobility and depressive
state. Indeed, interview-based studies have shown that de-
pression leads to a reduction of mobility and activity levels
(see, for example, [34]). Previous work has shown the po-
tential of using different smartphone sensor modalities to as-
sess mental well-being. However, the focus was on the ac-
tivity level detected with the accelerometer sensor [31], voice
analysis using the microphone [24], colocation using Blue-
tooth and WiFi registration patterns [25], and call logs [5]. In
this paper instead we focus on the characterization (also from
a statistical point of view) and exploitation of mobility data
collected by means of the GPS receivers embedded in today’s
mobile phones. More specifically, this work for the first time
addresses the following key questions: is there any correla-
tion between mobility patterns extracted from GPS traces and
depressive mood? Is it possible to devise unobtrusive smart-
phone applications that collect and exploit only mobility data
in order to automatically infer a potential depressed mood of
the user over time?

In order to answer these questions, we need to quantitatively
characterize the movements of the user over a certain time
interval and correlate them to a numeric indicator of the de-
pressed mood of a user. For this reason, we first extract mobil-
ity traces for a user and we define and compute mobility met-
rics that summarize key features of the user movement pat-

1

Canzian L, Musolesi M. Trajectories of Depression: Unobtrusive
Monitoring of Depressive States by means of Smartphone Mobility
Traces Analysis. In: Proceedings of the 2015 ACM International 
Joint Conference on Pervasive and Ubiquitous Computing (ACM 
UbiComp’15). ACM; 2015.
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Figure 8: Average sensitivity and specificity values vs.
THIST , for THOR = 0 days.

On the other extreme, with THIST = 14 days most of the
trained models achieve very large sensitivity and specificity
values. This means that, for most of the users, these person-
alized models are able to detect periods in which the users
experience an unusual depressed mood (this is linked to the
sensitivity), and at the same time they generate very few false
alarms (this is linked to the specificity). Notice that for all
the users the specificity values are larger than the sensitivity
values: this is not surprising because we are trying to detect
unusual PHQ scores for each users, hence the datasets are
unbalanced (they contain more 0 labels than 1 labels) and,
as a consequence, in order to minimize the mis-classification
probability, the trained SVM models are biased toward the
predictions of the 0 labels.

Next we investigate how the average (among the users) sen-
sitivity and specificity values vary with the time interval
THIST , for THOR = 0. The results are showed in Fig. 8.
Average sensitivity and specificity values are associated with
a confidence bar, which covers an interval of two standard de-
viation around the average value. Fig. 8 shows also the sen-
sitivity and specificity value of a generic SVM model, which
is trained and tested with the same modalities of the person-
alized models, but it exploits all the data collected from all
the 28 users. Both the average sensitivity and specificity of
the personalized models and the sensitivity and specificity of
the unique model rise with the increase of THIST , and reach
large values for THIST = 14 days. We notice that personal-
ized models achieve better performance that the unique gen-
eral model, confirming the insights derived from the correla-
tion analysis. However, the good performance of the unique
general model demonstrates the feasibility of this alternative
approach, which has the advantage that it does not require
the collection of labeled data from each user for training pur-
poses, and this might increase the actual usability and accep-
tance of the proposed prediction tools. This represents an
interesting trade-off to explore. For example, a model trained
on all the data can be adopted when personalized data are not
available, e.g., when a user installs an application relying on
these mechanisms for the first time.

In our final analysis we fix the value of the time interval
THIST to 14 days and we vary the parameter THOR; the av-
erage sensitivity and specificity values obtained (along with
the corresponding confidence bars) are represented in Fig.
9. As expected, the average sensitivity and specificity val-
ues decrease as THOR increases. This is not surprising since
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Figure 9: Average sensitivity and specificity values vs.
THOR, for THIST = 14 days.

THOR represents the prediction horizon (see Fig. 1), i.e., how
much in advance we try to predict the change in the PHQ
score of the user. However, it is surprising that the decay
is very slow. Indeed, the average sensitivity and specificity
are quite large even if we try to predict changes in the PHQ
score 14 days in advance, which is for example the time span
over which depressive symptoms are evaluated in the PHQ-8
test (and in many other standard test to diagnose depression).
This means that the considered mobility metrics might iden-
tify early signs that can be exploited for an early detection of
depressed moods.

CONCLUSIONS
In this work we have demonstrated that it is possible to ob-
serve a significant correlation between mobility patterns and
depressive mood using data collected by means of smart-
phones. We have also shown that it is possible to develop in-
ference algorithms as a basis for unobtrusive monitoring and
prediction of depressive mood disorders.

We believe that this work represents an important starting
point in this area and can be used as a basis for more
application-oriented projects in the area of digital mobile in-
terventions. For example, the techniques for automatic detec-
tion of depressive state presented in this work can be used for
building systems for automatic interventions, both through
technology (e.g., phone calls from healthcare officers) or tra-
ditional physical interactions. Moreover, the focus of this pa-
per is on a specific modality, i.e., GPS location, but the results
of this work can be indeed exploited to build a more refined
system based on the analysis of data extracted by means of
other sensors, such as accelerometers, and other sources of
information, such as call and SMS logs. Finally, we plan to
use the current application (or an extended version) in future
studies that will focus on specific populations, such as indi-
viduals that have been clinically diagnosed as depressed.
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Voice analysis as an objective state marker in bipolar disorder
M Faurholt-Jepsen1, J Busk2, M Frost3, M Vinberg1, EM Christensen1, O Winther2, JE Bardram2 and LV Kessing1

Changes in speech have been suggested as sensitive and valid measures of depression and mania in bipolar disorder. The present
study aimed at investigating (1) voice features collected during phone calls as objective markers of affective states in bipolar
disorder and (2) if combining voice features with automatically generated objective smartphone data on behavioral activities
(for example, number of text messages and phone calls per day) and electronic self-monitored data (mood) on illness activity
would increase the accuracy as a marker of affective states. Using smartphones, voice features, automatically generated objective
smartphone data on behavioral activities and electronic self-monitored data were collected from 28 outpatients with bipolar
disorder in naturalistic settings on a daily basis during a period of 12 weeks. Depressive and manic symptoms were assessed
using the Hamilton Depression Rating Scale 17-item and the Young Mania Rating Scale, respectively, by a researcher blinded
to smartphone data. Data were analyzed using random forest algorithms. Affective states were classified using voice features
extracted during everyday life phone calls. Voice features were found to be more accurate, sensitive and specific in the classification
of manic or mixed states with an area under the curve (AUC) = 0.89 compared with an AUC= 0.78 for the classification of depressive
states. Combining voice features with automatically generated objective smartphone data on behavioral activities and electronic
self-monitored data increased the accuracy, sensitivity and specificity of classification of affective states slightly. Voice features
collected in naturalistic settings using smartphones may be used as objective state markers in patients with bipolar disorder.

Translational Psychiatry (2016) 6, e856; doi:10.1038/tp.2016.123; published online 19 July 2016

INTRODUCTION
Observer-based clinical rating scales such as the Hamilton
Depression Rating Scale 17-item (HAMD)1 and the Young Mania
Rating Scale (YMRS)2 are used as golden standards to assess the
severity of depressive and manic symptoms when treating
patients with bipolar disorder. However, using these clinical rating
scales requires clinician–patient encounter. Further, the severity of
depressive and manic symptoms is determined by a subjective
clinical evaluation in a semi-structured interview with the risk of
individual observer bias. Developing objective and continuous
measures of symptoms’ severity to assist the clinical assessment
would be a major breakthrough.3,4 Methods using continuous and
real-time monitoring of objectively observable data on illness
activity in bipolar disorder that would be able to discriminate
between affective states could help clinicians to improve the
diagnosis of affective states, provide options for early intervention
on prodromal symptoms, and allow for close and continuous
monitoring and collection of real-time data on depressive and
manic symptoms outside clinical settings between outpatient
visits.
Studies analyzing the spoken language in affective disorders

date back as early as 1938.5 A number of clinical observations
suggest that reduced speech activity and changes in voice
features such as pitch may be sensitive and valid measures of
prodromal symptoms of depression and effect of treatment.6–12

Conversely, it has been suggested that increased speech activity
may predict a switch to hypomania.13 Item number eight on the
HAMD (psychomotor retardation) and item number six on the
YMRS (speech amount and rate) are both related to changes in
speech, illustrating that factors related to speech activity are

important aspects to evaluate in the assessment of symptoms’
severity in bipolar disorder. Based on these clinical observations
there is an increasing interest in electronic systems for speech
emotion recognition that can be used to extract useful semantics
from speech and thereby provide information on the emotional
state of the speaker (for example, information on pitch of the
voice).14

Software for ecologically extracting data on multiple voice
features during phone calls made in naturalistic settings over
prolonged time-periods has been developed15 and a few
preliminary studies have been published.16–20 One study extracted
voice features in six patients with bipolar disorder type I using
software on smartphones and demonstrated that changes in
speech data were able to detect the presence of depressive and
hypomanic symptoms assessed with weekly phone-based clin-
icians administrated ratings using the HAMD and the YMRS,
respectively.17 However, none of the patients in the study
presented with manic symptoms during the study period, and
the clinical assessments were phone-based. Another study on six
patients with bipolar disorder showed that combining statistics on
objectively collected duration of phone calls per day and
extracted voice features on variance of pitch increased the
accuracy of classification of affective states compared with solely
using variance of pitch for classification.18,19 The study did not
state if and how the affective states were assessed during the
monitoring period.
In addition to voice features, changes in behavioral activities

such as physical activity/psychomotor activity21–24 and the level of
engagement in social activities25 represent central aspects of

1Psychiatric Center Copenhagen, Rigshospitalet, Copenhagen, Denmark; 2DTU Compute, Technical University of Denmark (DTU), Lyngby, Denmark and 3The Pervasive Interaction
Laboratory, IT University of Copenhagen, Copenhagen, Denmark. Correspondence: Dr M Faurholt-Jepsen, Psychiatric Center Copenhagen, Rigshospitalet, Blegdamsvej 9, DK-
2100 Copenhagen, Denmark.
E-mail: maria@faurholt-jepsen.dk
Received 25 January 2016; revised 4 April 2016; accepted 5 May 2016

Citation: Transl Psychiatry (2016) 6, e856; doi:10.1038/tp.2016.123

www.nature.com/tp

Voice & Mood
Collection of voice features in naturalistic setting
• N=28 | 12 weeks 
• HDRS-17 (depression) and YMRS (manic)
• 179 clinical ratings (fortnightly)
• openSMILE (emolarge)
Classification results (user-specific models), accuracy (s.d.)
• depressive state : 70% (0.13)
• manic state : 61% (0.04)
Classification accuracy were not significantly increased when 
combining voice features with automatically generated 
objective data

“Voice features collected in 
naturalistic settings using 
smartphones may be used as 
objective state markers in patients 
with bipolar disorder. ”

M Faurholt-Jepsen, J Busk, M Frost, M Vinberg, EM Christensen, O Winther, 
JE Bardram, LV Kessing (2016,). Voice analysis as an objective state marker 
in bipolar disorder. Transl Psychiatry. Macmillan Publishers Limited. 
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Diagnosis in Sleep Disorders
• REM sleep behavior disorder (RBD) 

– an early biomarker for many neurological diseases (e.g. Parkinson)
• Today a very tedious maual labeling process

– one clinician one week for one patient

• Novel ML approach for automatic detection / labeling

• 71% accuracy shown
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Validation of a new data-driven automated algorithm for muscular activity
detection in REM sleep behavior disorder
Matteo Cesaria,⁎, Julie A.E. Christensena,b, Friederike Sixel-Döringc,d, Claudia Trenkwalderc,
Geert Mayerd, Wolfgang H. Oerteld, Poul Jennumb, Helge B.D. Sorensena
a Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
bDanish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet Glostrup, Denmark
c Paracelsus-Elena Klinik, Kassel, Germany
dDepartment of Neurology, Philipps University, Marburg, Germany

A R T I C L E I N F O

Keywords:
Data-driven method
Electromyography
Muscular activity
Periodic limb movement disorder
Polysomnography
REM sleep behavior disorder
REM sleep without atonia

A B S T R A C T

Background: Documentation of REM sleep without atonia is fundamental for REM sleep behavior disorder (RBD)
diagnosis. The automated REM atonia index (RAI), Frandsen index (FRI) and Kempfner index (KEI) were pro-
posed for this, but achieved moderate performances.
New method: Using sleep data from 27 healthy controls (C), 29 RBD patients and 36 patients with periodic limb
movement disorder (PLMD), we developed and validated a new automated data-driven method for identifying
movements in chin and tibialis electromyographic (EMG) signals. A probabilistic model of atonia from REM
sleep of controls was defined and movements identified as EMG areas having low likelihood of being atonia. The
percentages of movements and the median inter-movement distance during REM and non-REM (NREM) sleep
were used for distinguishing C, RBD and PLMD by combining three optimized classifiers in a 5-fold cross-
validation scheme.
Results: The proposed method achieved average overall validation accuracies of 70.8% and 61.9% when REM
and NREM, and only REM features were used, respectively. After removing apnea and arousal-related move-
ments, they were 64.2% and 59.8%, respectively.
Comparison with existing method(s): The proposed method outperformed RAI, FRI and KEI in identifying RBD
patients and in particular achieved higher accuracy and specificity for classifying RBD.
Conclusions: The results show that i) the proposed method has higher performances than the previous ones in
distinguishing C, RBD and PLMD patients, ii) removal of apnea and arousal-related movements is not required,
and iii) RBD patients can be better identified when both REM and NREM muscular activities are considered.

1. Introduction

Rapid eye movement (REM) sleep behavior disorder (RBD) is a
parasomnia characterized by loss of muscle atonia during REM sleep
and a clinical history of dream enactment (American Academy of Sleep
Medicine, 2014; Schenck et al., 1986; Schenck and Mahowald, 2002).
Follow-up studies (Postuma et al., 2015; Schenck et al., 2013) and
neurophysiological investigations (Boeve et al., 2013) support the hy-
pothesis that RBD is an early stage of alpha-synucleinopathies, in-
cluding Parkinson’s disease (PD), PD dementia, dementia with Lewy
bodies and multiple system atrophy (Högl et al., 2018). Therefore, a
correct diagnosis of RBD becomes of critical importance in order to
identify alpha-synucleinophathies in their early stages, and RBD

patients may become the target of neuroprotective treatments when
they will become available.

In the diagnosis of RBD, the documentation of REM sleep without
atonia (RSWA) in electromyographic (EMG) signals during poly-
somnography (PSG) is essential. Currently, the gold standard for RSWA
scoring is the application of one of the following visual methods: i) The
American Academy for Sleep Medicine (AASM) recommends RSWA
identification when either tonic and phasic activity in the chin or phasic
activity in the limbs is seen in more than 27% of 30-s REM sleep epochs
(Berry et al., 2016); ii) RSWA is identified by the Montréal method
when either in the chin signal more than 30% of 20-s REM sleep epochs
show tonic activity, or when in the same signal more than 15% of these
epochs contain phasic activity (Lapierre and Montplaisir, 1992;

https://doi.org/10.1016/j.jneumeth.2018.11.016
Received 14 August 2018; Received in revised form 7 November 2018; Accepted 19 November 2018

⁎ Corresponding author at: Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads, Building 349, 2800, Kgs. Lyngby, Denmark.
E-mail address: maces@elektro.dtu.dk (M. Cesari).
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where xi (i=1,…,N) are the EMG samples in each window.
We decided to use 1-s windows as RAI (the index showing the best

performances for RBD identification in our previous work (Cesari et al.,
2018b)) is calculated using 1-s windows and because it has been shown
that phasic activity can be successfully identified with this window
length (Fairley et al., 2012). Moreover, we visually compared the
MAAV values obtained with 1-s windows and 3-s windows, and noticed

that short bursts of phasic activity were excessively smoothed when 3-s
windows were used. We decided to use 50% overlap to ensure that
short movements located at the edge of the windows were not
smoothed down by the MAAV calculation.

2.2.2. MAAV normalization
Interpretation of raw EMG values is difficult due to the many factors

that influence electrophysiological signals, therefore their normal-
ization is fundamental for inter- and intra-subject studies (Halaki and
Ginn, 2012). Thus, for each window n we normalized the feature

Table 1
Demographic and sleep data for the cohort studied. Statistical comparison of the fraction of men was made with chi-square test; all other statistical comparisons were
made with Kruskal-Wallis tests. Chi-square statistics (χ2) and degrees of freedom (df) are shown for each test. In case of p-values< 0.05, post-hoc comparisons with
Wilcoxon rank sum tests were performed and the correspondent z-statistics and p-values corrected with Tukey-Kramer procedure are reported. p-values lower than
the critical value of 0.05 are highlighted as significant. C: healthy controls, RBD: patients suffering from idiopathic REM sleep behavior disorder and PLMD: patients
suffering from periodic limb movement disorder. PLMS: periodic limb movement (PLM) series; nPLM: limb movements not included in PLM series; AHI: apnea/
hypopnea index, hREM/hNREM/hsleep: hours of REM/NREM/sleep; n.s.: not significant. *data available only for 18 C, 26 RBD, and 32 PLMD patients.
Parameter C RBD PLMD Kruskal-Wallis C vs RBD C vs PLMD RBD vs PLMD

χ2 df p |z| p |z| p |z| p

Total count 27 29 36 – – – – – – – – –
Fraction of men 0.48 0.72 0.61 3.46 2 0.18 – n.s. – n.s. – n.s.
Age [years, μ± σ] 56.6 ± 9.2 57.7 ± 17.2 58.8 ± 14.8 1.69 2 0.43 – n.s. – n.s. – n.s.
#arousals/hsleep [μ± σ] 7.6 ± 4.6 11.2 ± 12.4 9.3 ± 8.3 0.59 2 0.75 – n.s. – n.s. – n.s.
AHI [# apneas/hsleep, μ± σ] 3.3 ± 4.9 11.2 ± 16.7 7.6 ± 8.9 5.56 2 0.06 – n.s. – n.s. – n.s.
PLMS index [#PLM/hsleep, μ± σ]* 6.3 ± 11.2 26.7 ± 34.4 50.9 ± 42.5 26.78 2 <0.001 1.84 0.09 5.15 <0.001 3.03 <0.01
#nPLM/hsleep [μ± σ]* 5.5 ± 5.7 6.7 ± 6.1 7.2 ± 6.6 1.34 2 0.51 – n.s. – n.s. – n.s.
#arousals/hREM [μ± σ] 11.0 ± 8.6 16.7 ± 17.2 8.5 ± 5.9 4.33 2 0.11 – n.s. – n.s. – n.s.
#apneas/hREM [μ± σ] 7.9 ± 13.3 14.7 ± 22.7 10.7 ± 14.7 2.29 2 0.32 – n.s. – n.s. – n.s.
#PLM/hREM [μ± σ]* 4.9 ± 9.3 37.1 ± 46.4 25.5 ± 33.1 10.06 2 <0.01 2.60 0.01 3.10 <0.01 0.15 0.99
#nPLM/hREM [μ± σ]* 7.5 ± 8.9 9.1 ± 8.6 10.2 ± 9.3 1.79 2 0.41 – n.s. – n.s. – n.s.
#arousals/hNREM [μ± σ] 9.8 ± 5.6 14.7 ± 15.2 12.8 ± 9.4 1.47 2 0.48 – n.s. – n.s. – n.s.
#apneas/hNREM [μ± σ] 2.2 ± 3.4 11.6 ± 16.6 7.0 ± 8.8 7.69 2 0.02 2.11 0.05 2.67 0.03 0.08 0.99
#PLM/hNREM [μ± σ]* 6.3 ± 12.4 26.6 ± 36.2 55.12 ± 46.9 25.72 2 <0.001 1.85 0.15 5.15 <0.001 3.03 <0.01
#nPLM/hNREM [μ± σ]* 4.9 ± 5.3 5.4 ± 5.5 5.4 ± 5.8 0.60 2 0.74 – n.s. – n.s. – n.s.
Sleep efficiency [%, μ± σ] 86.9 ± 9.3 75.5 ± 24.0 74.4 ± 25.3 7.42 2 0.02 2.16 0.07 2.55 0.03 0.22 0.97
Time in bed [min, μ± σ] 500.8 ± 71.8 449.3 ± 86.8 447.7 ± 76.9 8.28 2 0.02 2.59 0.02 2.29 0.08 0.87 0.73
REM latency [min, μ± σ] 94.0 ± 42.9 154.7 ± 99.0 114.7 ± 73.8 7.56 2 0.02 2.62 0.02 0.94 0.63 1.95 0.13
W [%, μ± σ] 13.0 ± 9.2 20.1 ± 15.8 19.7 ± 13.4 6.38 2 0.04 1.77 0.13 2.52 0.04 0.31 0.91
REM [%, μ± σ] 20.1 ± 5.9 14.1 ± 7.9 15.6 ± 6.6 9.78 2 0.01 2.85 <0.01 2.49 0.04 0.83 0.74
N1 [%, μ± σ] 8.0 ± 4.4 11.3 ± 9.3 10.2 ± 8.7 1.84 2 0.40 – n.s. – n.s. – n.s.
N2 [%, μ± σ] 44.8 ± 8.8 35.3 ± 16.1 37.8 ± 17.1 5.11 2 0.08 – n.s. – n.s. – n.s.
N3 [%, μ± σ] 14.0 ± 7.6 14.8 ± 15.5 10.8 ± 10.1 2.49 2 0.29 – n.s. – n.s. – n.s.

Fig. 1. Schematic overview of the steps of the data-driven method for muscular activity probability estimation. From each subject, mean absolute amplitude values
(MAAV) of 1-s windows (with 50% overlap) from the chin EMG signal were extracted and then normalized (MAAV’) with respect to the surrounding windows. The
healthy control subjects (C) were randomly divided into 3 subgroups (K={1,2,3}) of 9 subjects and for each subgroup theMAAV’ values during REM sleep were used
to train 5 different probabilistic modelsMK,Dth with different levels of compressions (Dth={0.01, 0.02, …, 0.05}). For each model, the likelihood values of the training
data of belonging to the model were calculated (likelihood vector A) and their p-th percentiles (with p={1, 2, …, 10}) were used to define10 different thresholds (Tp).
At the same time, for each model, the likelihood of MAAV’ values through the entire sleep recording of each of the remaining 18 C, 29 REM sleep behavior disorder
(RBD) and 36 periodic limb movement disorder (PLMD) patients were calculated (likelihood vector L). For each value i of L, the respective probability of muscular
activity p(MA)i was computed proportionally to the difference Tp-Li. Thus, for each of the 18 C, 29 RBD and 36 PLMD a muscular activity probability profile p(MA)
was obtained for each combination of Dth and p. The same procedure was repeated independently for tibialis left and right EMG signals. In the graph, the red color
represents the three different random splits of C subjects, the blue color the training of the models with different Dth values and the green color the different
thresholds Tp in correspondence of different p values to calculate movement probability profiles. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article).
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Detection of Atrial Fibrillation
• ECG monitoring is core to most cardio-vascular diseases
• Today

– a constrained Holter Monitoring setup w. manual data upload
– a manual labeling and detection process

• Novel deep learning model for real-time detection of atrial fibrillation 
(AFIB)
– 98% accuracy
– both seen and unseen (benchmark) data
– analyze 24 hours of data in less than one second
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Fig. 4. Illustration of an unfolded bidirectional LSTM. The input sequence is fed into 
two separate hidden layers and processed in both directions before combining the 
two outputs in the output layer. 
function ( J ) to evaluate the performance of the network. Detec- 
tion of AF is considered a binary classification problem and hence 
the binary cross-entropy ( Eq. (9) ) is used as cost function in this 
study. 
J = − 1 

N t ∑ 
x (y ln (a ) + (1 − y ) ln (1 − a )) , (9) 

where a is the activation of the output layer, y is the desired out- 
put and N t is the total number of training inputs. Both a and y 
depends on the input x , but this is left out for notational simplic- 
ity. 

The output of the network a is parameterized by all the weights 
and biases of the network and hence the cost function evaluates 
the performance of the network with regard to the trainable pa- 
rameters. J is typically defined in a high dimensional space and 
contains non-linearities, which makes the optimization non-convex 
( Nielsen, 2015 ). The optimization problem is solved by employ- 
ing an iterative scheme known as the Stochastic Gradient Descent 
(SGD). 
3. Materials and methods 
3.1. Data 

Three different databases (freely available from Physionet, 
Goldberger et al., 20 0 0 ) are used in the training and validation 
of the proposed model. They are the MIT-BIH AF Database (AFDB) 
( Moody & Mark, 1983 ), the MIT-BIH Arrhythmia Database (MITDB) 
( Moody & Mark, 2001 ) and the MIT-BIH NSR Database (NSRDB) 
( Goldberger et al., 20 0 0 ). 

The AFDB includes 25 long-term ECG recordings of human sub- 
jects with AF (mostly paroxysmal). The individual recordings are 
approximately 10 h in duration and contain two-channel ECG sig- 
nals each sampled at 250 samples/second with 12-bit resolution 
over a range of ± 10 mV ( Goldberger et al., 20 0 0; Moody & Mark, 
1983 ). Each recording contains a beat annotation file prepared us- 
ing an automatic R-peak detection algorithm. In this study, two of 
the 25 recordings (record 00735 and 03665 ) have been excluded 
from further analysis as the signals are unavailable. 

MITDB contains 48 half-hour excerpts of two-channel ambula- 
tory ECG recordings, obtained from 47 subjects (records 201 and 

Fig. 5. Flowchart of the proposed method. The method includes a training phase in 
which the optimal parameters for the network architecture is estimated, an eval- 
uation phase for validating performance measures and a generalization phase to 
report performance on previously unseen data sets. 
202 are from the same subject) studied by the BIH Arrhythmia 
Laboratory between 1975 and 1979. The recordings were digitized 
at 360 samples/second/channel with 11-bit resolution over a 10 mV 
range ( Moody & Mark, 2001 ). Additionally, each recording contains 
an annotation file, with not only the location and type of each beat 
but also the onset and type of any arrhythmia in the recording 
( Goldberger et al., 20 0 0; Moody & Mark, 20 01 ). It is important to 
notice the split of recordings into the 100 series and the 200 series. 
The 100 series contains random samples of the population without 
any episodes of AF. Additionally, three of the recordings include 
paced beats (record 102, 104 and 107). The 200 series was manu- 
ally selected to include less common arrhythmias such as ventric- 
ular bigeminy and trigeminy, along with 8 AF subjects ( Goldberger 
et al., 20 0 0; Moody & Mark, 2001 ). 

The NSRDB contains 18 long-term ECG recordings of subjects 
referred to the Arrhythmia Laboratory at Boston’s Beth Israel Hos- 
pital (now the Beth Israel Deaconess Medical Center). Subjects in- 
cluded in this database were found to have no significant arrhyth- 
mias and is hence considered NSR ( Goldberger et al., 20 0 0 ). The 
recordings were digitized at 128 samples/second/channel. Along 
with each digitized recording is a reference annotation file con- 
taining the location and type of each beat. Lastly, each database is 
summarized in Table 1 . 
3.2. Model overview 

DL offers a unique approach in which the features are learned 
directly from the input signal and hence no prior domain knowl- 
edge is required to engineer useful features. The novel algorithm 
proposed in this study is a multi-layer DL network featuring both 
convolutional and recurrent layers. An overview of the network ar- 
chitecture can be found in Fig. 5 . Furthermore, a detailed structure 
of the different layers including their output dimensions is shown 
in Fig. 6 . 
3.2.1. Preprocessing 

The raw ECG recordings from the databases are converted to 
RRI sequences to reduce computational complexity and highlight 
AF behavior. Measuring the interval between adjacent beats also 
known as RRI has shown good performance in detection of certain 
cardiac arrhythmias ( Colloca, Johnson, Mainardi, & Clifford, 2013; 
Dash, Chon, Lu, & Raeder, 2009; Lake & Moorman, 2010; Stein, 
Bosner, Kleiger, & Conger, 1994 ). The RRI sequence captures one of 
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